Body Composition (DEXA lean/fat) IMPC_DX A_001

Purpose

Measure bone mineral content and density as well as body composition in mice using the DEXA (Dual Energy X-ray Absorptiometry) analyser.

Experimental Design

- Minimum number of animals : 7M + 7F
- Age at test: Week 14

Procedure

3.1 Calculate and record the volume of anaesthetic solution required for intraperitoneal (IP) injection.

3.2 Anesthetize the mice.

3.3 Monitor the animal carefully until unconsciousness by ensuring that the mouse is adequately sedated.

3.4 Weigh the mouse and record the value.

3.5 Measure the length of the mouse as follows and record the value (accuracy ±0.1cm)

3.5.1 Place the unconscious mouse on a disinfected ruler so that its nose is at zero

(figure 1).

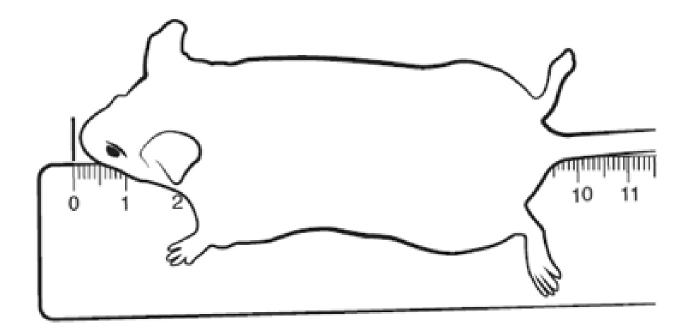



Figure 1

3.5.2 To measure the entire length of the head press gently against the ruler

(figure 2) and gently pull the tail to ensure that the spine returns to its full

length (figure 3).

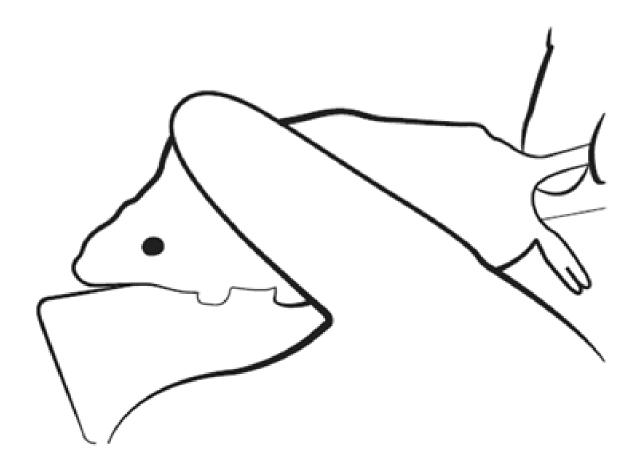


Figure 3

3.5.3 Measure the length starting from the nose (0cm) to the beginning of the tail (figure 4). Record the measurement – the accuracy is within 0.1cm. For

example in figure 4 the length of the mouse is 9.5cm.

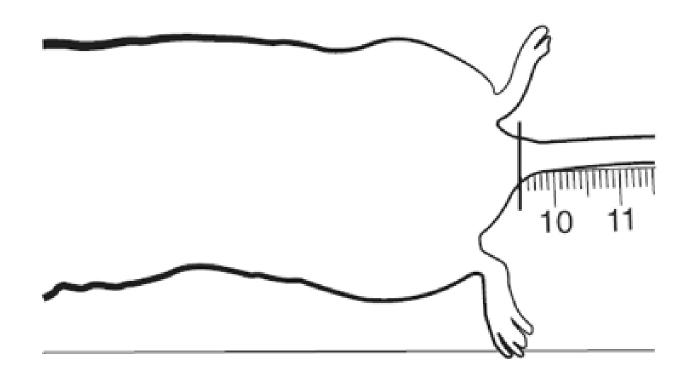


Figure 4

3.5.4 Disinfect the ruler and contact area after the measurement has been taken.

3.6 Place the unconscious mouse into the DEXA analyser.

3.7 Perform a scout-scan.

3.8 Optimise the area of interest and perform a measure-scan.

3.9 Note that the exposure dose per mouse is 300Sv.

3.10 For the analysis of the data, regions of interest must be defined. The standard analysis comprises of a whole body analysis excluding the head area.

Continue with X-ray analysis or

3.11 Remove the mouse once the image is captured. Place the mouse on a heated mat, set at 37°C, in a cage and monitor closely until consciousness is regained.

Notes

Dual-energy X-ray Absorptiometry (DEXA or DXA) is a method of quantifying bone mineral content and density. DXA uses an X-ray generator of high stability to produce photons over a broad spectrum of energy levels. Its photon output is filtered to produce the two distinct peaks necessary to distinguish bone from soft tissue.

The technique used for separating photon output into two distinct energy levels is known as 'K-edge' filtration. By placing a filter element in the beam path, energy levels reacting with the filter material are sharply attenuated. The filter effect gradually lessens at higher energy levels, and so a second peak is introduced. The tin filter material used in this system produces energy peaks at 28keV and 48keV. Two solid-state detectors and proprietary energy discrimination are used to determine high and low energy counts.

The count data is transformed by software into bone and non-bone components, thus generating the bone density values. Information is generated about body weight, body length, fat and bone mass, bone mass density, and lean mass of each mouse.

Data QC

Calibration of the system is done in daily intervals using the phantoms delivered by the manufacturer. The results from the calibration runs are recorded by the system.

Parameters and Metadata

Body weight IMPC_DXA_001_001 | v1.1

simpleParameter

Req. Analysis: false	Req. Upload: true	Is Annotated: false
Unit Measured: g		
Description: body_weight		
Fat mass IMPC_DXA_0 simpleParameter	02_001 v1.1	
Req. Analysis: false	Req. Upload: true	Is Annotated: true
Unit Measured: g		
Description: fat_mass		

Lean mass IMPC_DXA_003_001 | v1.1

simpleParameter

Req. Analysis: false	Req. Upload: true	Is Annotated: true
Unit Measured: g		
Description: lean_mass		

Bone Mineral Density (excluding skull) IMPC_DXA_004_001 | v1.2

simpleParameter

Req. Analysis: false	Req. Upload: false	Is Annotated: true
Unit Measured: g/cm^2		

Description: bone_mineral_density_excluding_skull_

Bone Mineral Content (excluding skull) IMPC_DXA_005_001 | v1.2

simpleParameter

 Req. Analysis: false
 Req. Upload: false
 Is Annotated: true

 Unit Measured: g

Description: bone_mineral_content_excluding_skull_

.....

Body length IMPC_DXA_006_001 | v1.2

simpleParameter

Req. Analysis: false	Req. Upload: false	Is Annotated: true	
Unit Measured: cm			
Description: body_length			
BMC/Body weight	MPC_DXA_007_001 v1.3		
Req. Analysis: false	Req. Upload: false	Is Annotated: true	
Unit Measured: ratio			
Description: bmc_body_weight			
Derivation: div('IMPC_DXA_005_001', 'IMPC_DXA_001_001')			
Lean/Body weight IMPC_DXA_008_001 v1.3 simpleParameter			
Req. Analysis: false	Req. Upload: false	Is Annotated: true	

Unit Measured: ratio

Description: lean_body_weight

Derivation: div('IMPC_DXA_003_001', 'IMPC_DXA_001_001')

Fat/Body weight IMPC_DXA_009_001 | v1.3

simpleParameter

Req. Analysis: false	Req. Upload: false	Is Annotated: true	
Unit Measured: ratio			
Description: fat_body_weight			
Derivation: div('IMPC_DXA_002_001', 'IMPC_DXA_001_001')			

Bone Area IMPC_DXA_010_001 | v1.3

simpleParameter

Req. Analysis: false	Req. Upload: false	Is Annotated: true

Unit Measured: cm^2

Description: bone_area_bmc_bmd_

Derivation: div('IMPC_DXA_005_001', 'IMPC_DXA_004_001')

Equipment ID IMPC_DXA_011_001 | v1.0

procedureMetadata

Req. Analysis: false Req. Upload: true Is Annotated: false

Description: equipment_name

Equipment manufacturer IMPC_DXA_012_001 | v1.1

procedureMetadata

Description: equipment_manufactuer

Options: GE Medical Systems, Norland Stratec, Bruker, Faxitron Bioptics LLC, EchoMRI LLC, Scintica,

Equipment model IMPC_DXA_013_001 | v1.0

procedureMetadata

Req. Analysis: true Req. Upload: true Is Annotated: false

Description: equipment_model

Options: Lunar Piximus II, Sabre, Minispec LF50, Minispec MQ 10, UltraFocus 100, UltraFocus DXA, UltraFocus DXA Xray tube #2, Minispec LF90, EchoMRI-100, Insight-VET-DXA,

Mouse Status IMPC_DXA_014_001 | v1.0

procedureMetadata

Req. Analysis: false

Description: mouse_status

Options: Anesthetized, Dead, Awake,

Anesthesia IMPC_DXA_015_001 | v1.0

procedureMetadata

Req. Analysis: false	Req. Upload: true	Is Annotated: false

Description: anesthesia

Options: Avertin, Ketamine+Xylazine, Isoflurane, Euthatal, Tribromoethanol, Domitor+Ketamin, Ketamine+Xylazine+Antisedan, Pentobarb, No anesthesia,

Experimenter ID IMPC_DXA_016_001 | v1.0

procedureMetadata

Req. Analysis: false	Req. Upload: true	Is Annotated: false

Date equipment last calibrated IMPC_DXA_017_001 | v1.2

procedureMetadata

Req. Analysis: false Req. Upload: false Is Annotated: false

HAW IMPC_DXA_018_001 | v1.1

procedureMetadata

Req. Analysis: true	Req. Upload: false	Is Annotated: false
Unit Measured: g/cm^2		

.....
